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Abstract: This study aims to evaluate the accuracy of the Liquid 
Drop Model (LDM) in predicting atomic nuclear binding energy and 
binding energy per nucleon, by comparing it with reference values. 
LDM is based on the assumption that atomic nuclei can be treated as 
drops of incompressible fluid. Nuclear binding energy is calculated 
using the Semi-Empirical Mass Formula (SEMF), and the results are 
analyzed through linear regression comparison with empirical mass 
defect data. The calculation results show that the LDM produces 
small deviations for binding energy values in medium nuclei. 
However, this model is less accurate in predicting binding energy for 
light and heavy nuclei. Deviations in heavy atomic nuclei occur due 
to the dominant collective effect. Under these conditions, the 
phenomenon of atomic nuclei is more accurately explained as the 
interaction of all nucleons as a whole, rather than the behavior of 
individual nucleons. This supports the main principle of LDM in 
understanding heavy atomic nuclei. In addition, the calculation of 
binding energy per nucleon by LDM produces the highest binding 
energy peak in Krypton-80 with a value of 8.98 MeV/nucleon. This 
result differs from empirical reference values that place Iron-56 (Fe-
56) as the most stable nucleus with the highest binding energy, namely 
8.79 MeV/nucleon. This deviation in the stability peak highlights the 
limitations of LDM, particularly regarding the lack of consideration 
of quantum effects and nuclear shell structures that are more relevant 
to certain nuclei. 
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1. Introduction 

All matter in the universe is composed of atoms that have electrons and atomic nuclei. The 
atomic nucleus consists of basic elementary particles, namely protons and neutrons. Protons are 
positively charged electronic units and have a mass 1836 times greater than that of electrons. 
Meanwhile, neutrons are neutral particles with a mass slightly greater than that of protons. These 
two particles are bound together by a very strong nuclear force. Neutrons and protons bound 
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together in this way are called nucleons. The atomic nucleus, consisting of protons and neutrons, 
is bound together by an energy known as nuclear binding energy.  

Nuclear binding energy is a fundamental concept in nuclear physics that defines the stability 
of an atomic nucleus. Physically, binding energy is the minimum energy required to separate the 
nucleus into its constituent nucleons (protons and neutrons). A large total binding energy value for 
an atomic nucleus indicates that the nucleus is strongly bound and more stable. The calculation of 
nuclear binding energy (B) is based on mass defect (Dm), in accordance with Einstein's famous 
equation, 𝐸 = 𝑚𝑐%. However, to explain how nuclear forces work collectively within the nucleus 
and to predict the value of binding energy theoretically, an effective descriptive model is needed, 
such as the Liquid Drop Model [1], [2]. This descriptive model refers to an approach or framework 
that simplifies the highly complex system at the core of an atom into an analogy that is easier to 
understand and calculate, while still providing practically accurate results. 

The Liquid Drop Model (LDM) was first proposed by George Gamow in 1930 and 
significantly developed by Niels Bohr and John Archibald Wheeler. The LDM is based on the 
analogy that the atomic nucleus behaves like a drop of liquid consisting of nucleons bound by the 
strong nuclear force [3], [4], [5]. This analogy is effective because of two main properties of nuclei 
and liquids: first, the nuclear force has a short range and occurs between closest neighbors 
(saturation), similar to molecular bonds in liquids. Second, atomic nuclei have an almost constant 
density, independent of the number of nucleons (A), just like incompressible liquids. This model 
aims to explain the collective properties of the nucleus as a whole, ignoring the individual behavior 
of nucleons. The liquid drop model of the nucleus successfully expresses the property of the 
nucleus, namely the average energy per nucleon [6], [7]. 

Although it is a classical approach, LDM plays a central role in explaining two macroscopic 
nuclear phenomena such as fission and fusion. This model accurately explains why very heavy 
nuclei (such as Uranium) are unstable and tend to split (fission) due to the dominance of Coulomb 
repulsive forces balanced by surface tension. In addition, the LDM provides a foundation for 
understanding that energy is released when light nuclei merge (fusion) into nuclei with the highest 
binding energy per nucleon (around A=60) [3], [8]. Research conducted by Myers & Świątecki 
(1966) and Strutinsky (1967) shows that pure macroscopic models with LDM fail to account for 
shell effects, which provide extra stability at certain mass numbers [9], [10]. Although the weakness 
of LDM has often been found in other studies, these studies do not quantify the magnitude of the 
deviation in a specific mass range. Therefore, the LDM using Semi-Empirical Mass Formula 
(SEMF) was used in this study to analyze the binding energy of several atomic nuclei (light to heavy 
nuclei) compared to the binding energy in the reference by Krane (1988) [7]. 

2. Method 

This research uses a theoretical-computational research method with a literature study and 
numerical simulation approach. The main focus is on the quantitative analysis of the binding energy 
(B) of various stable nuclides based on parameters set by the Liquid Drop Model. The primary data 
sources are nuclear physical constants and experimental atomic mass data sourced from the 
international atomic mass database (AME - Atomic Mass Evaluation). This approach allows for 
the calculation and comparison of theoretical nuclear binding energy with experimental data, 
thereby enabling the evaluation of the model's validity. The computational procedures performed 
in this study were carried out through the following steps. 
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1. Data Selection: Isotopes were selected based on mass number (A) categories (light, medium, 
and heavy). 

2. Data Processing: Experimental binding energy was obtained from atomic mass defects using 
equation (2). 

3. Calculation: Theoretical binding energy was calculated using Semi-Empirical Mass Formula 
(SEMF) parameters in equation (1). 

4. Computational Tools: All calculations, linear regression analyses, and data visualizations were 
performed using Microsoft Excel. 

The first method uses the Liquid Drop Model (LDM), which is a macroscopic approach that 
treats atomic nuclei as incompressible liquid droplets. The nuclear binding energy (B) is calculated 
using the Semi-Empirical Mass Formula (SEMF), which breaks down the total binding energy into 
five main terms, each representing a different physical phenomenon in the nucleus. These terms 
include: volume energy (proportional to the number of nucleons, A), surface energy (correcting for 
the loss of binding at the surface, proportional to 𝐴%/(), Coulomb energy (electrostatic repulsive 

force between protons, proportional to )*

+,/-
), asymmetry energy (correcting for the imbalance in 

the number of protons and neutrons), and pairing energy (correcting for the stability of nuclei with 
even/odd numbers of nucleons). The core of this method is the use of five semi-empirical 
constants (𝑎/, 𝑎%, 𝑎(, 𝑎0, 𝑎1) that must be determined by fitting experimental data on nuclear 
binding energy, making this model predictive yet still empirical due to these constants [7], [11]. The 
nuclear binding energy equation with LDM is written as in equation (1) below. 

𝐵(𝐴, 𝑍) = 𝑎/𝐴 − 𝑎%𝐴
%
( − 𝑎(

𝑍(𝑍 − 1)

𝐴
/
(

− 𝑎0
(𝐴 − 2𝑍)%

𝐴 − 𝑎1𝐴:(/0 
(1) 

with 𝐵(𝐴, 𝑍) = nuclear binding energy,  𝐴 = mass number, 𝑍 = atomic number, and the values of 
constants 𝑎/, 𝑎%, 𝑎(, 𝑎0 and 𝑎1 are as follows. 

𝑎/ = 15.753	MeV 

𝑎% = 17.804	MeV 

𝑎( = 0.7103	MeV 

𝑎0 = 23.69	MeV 

𝑎1 = E
33.6	𝐴:(/0 𝑖𝑓	𝑁	𝑎𝑛𝑑	𝑍	𝑒𝑣𝑒𝑛	𝑛𝑢𝑚𝑏𝑒𝑟

−33.6	𝐴:
(
0 𝑖𝑓		𝑁	𝑎𝑛𝑑	𝑍	𝑜𝑑𝑑	𝑛𝑢𝑚𝑏𝑒𝑟

0 𝑖𝑓	𝑁 + 𝑍 = 𝑜𝑑𝑑	𝑛𝑢𝑚𝑏𝑒𝑟
 

The second method is the calculation of pure experimental nuclear binding energy through the 
concept of Mass defect (DE). Binding energy (B) is defined as the energy released when nucleons 
(protons and neutrons) bind together to form a nucleus, which is equivalent to the difference 
between the total mass of the constituent components (free mass) and the mass of the nucleus 
formed (bound mass) [7]. Mathematically, the modified mass defect is calculated as equation (2) as 
follows. 
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∆𝐸 = 𝑍S𝑚T + 𝑚UV + 𝑁𝑚W − (𝑚X + 𝑍𝑚U) (2) 

The mass of 1 proton + the mass of 1 electron is equal to the mass of a hydrogen atom (𝑚Y). 
Meanwhile, the mass of the nucleus + 𝑍ZU is equal to the atomic mass. Therefore, equation (2) can 
be rewritten as equation (3). 

∆𝐸 = 𝑍𝑚Y + 𝑁𝑚W − 𝑚[ (3) 

This method produces the most accurate nuclear binding energy values because it is based on 
actual nuclear mass measurements, making it the primary benchmark for evaluating the accuracy 
of theoretical models such as LDM [7]. 

To assess the quantitative relationship between LDM results and experimental values of DE, a 
simple linear regression method applied. The binding energy data predicted by LDM (B(Z,A)) can 
be plotted on the X-axis against the experimental binding energy data DE) derived from mass 
defects on the Y-axis for a large number of nuclei. If LDM is a perfect model, the result will be a 
straight line with a slope close to 1 and an intercept close to 0, with a correlation coefficient (R%) 
close to 1. The deviation of the data points from the regression line (residuals) will explicitly show 
the prediction error of the LDM, particularly the model's failure to capture the shell effects and 
internal structure of the nucleus, which are implicitly captured by the mass defect measurements. 

3. Results and Discussion 

3.1 Comparison of DE and B(A,Z) 
Figure 1 shows the relationship between an energy quantity DE and the Nuclear Binding 
Energy B(A,Z). The curve shows a linear relationship, implying that DE is almost equal to the 
Nuclear Binding Energy B(A,Z), indicating a very strong correlation and the possibility that 
DE represents energy directly related to the process of nucleus formation or separation. 
However, there is a slight but significant upward deviation after B(A,Z) exceeds 1800, where 
the gradient of the curve becomes steeper. This change in gradient at high binding energies 
may indicate the presence of additional effects that arise in very large and highly bound nuclei, 
or it may be an anomaly related to theoretical calculations or limitations of the liquid drop 
model used in this study. The regression line equation shown is ∆𝐸 = 1.0162	𝐵(𝐴, 𝑍) −
12.933 with 𝑅% = 0.9979, indicating that this linear model has a very high level of fit to the 
data (99.79%). 
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Figure 1.  Comparison of ∆E and B(A,Z) 

 
This graph shows that the calculation of nuclear binding energy can be performed using 

LDM for nuclei with B(A,Z) less than 1800 by using the calculation of parameters A, Z, and 
LDM constants (equation (1)). This calculation can be an alternative if experimental data or 
measurements are not available to calculate mass defects (DE) as in equation (3). The results 
of this study are consistent with other studies showing that LDM provides an excellent 
approach (average deviation below 1.5%) for most stable nuclides, with the largest deviation 
patterns occurring in light nuclei [12]. 

In addition to heavy nuclei (B(A,Z)> 1800), LDM does not accurately calculate the 
binding energy of light nuclei such as deuterium, tritium, and helium because this model is 
based on macroscopic assumptions of collective behavior and uniform effective density that 
are only valid for heavy nuclei with many nucleons. In light nuclei consisting of only two to 
four nucleons, these assumptions fail because there is no significant interior; almost all 
nucleons are on the surface, making the surface energy term artificially dominant. 
Furthermore, the binding energy of light nuclei is strongly influenced by individual 
interactions between nucleons and specific quantum mechanical effects, which LDM ignores. 
Therefore, light nucleus energies must be calculated using the Nuclear Shell Model or 
fundamental potential-based calculations rather than the collective statistical approximation 
of the LDM [7], [13], [14]. Table 1 shows a comparison of binding energies calculated using 
LDM and DE for the elements Hydrogen, Deuterium, Tritium, and Helium. 
 

Table 1. Calculated nuclear binding energy (LDM) and DE for the light nucleus 
Element A Z B(A,Z) (MeV) DE (MeV) Deviation 
Hydrogen 1 1 -25.741 0 23.31% 
Deuterium 2 1 -16.80014265 2.224422 113.24% 
Tritium 3 1 2.192652985 8.482239 286.85% 
Helium 3 2 1.208385108 7.718409 538.74% 

 

Table 2. Calculated nuclear binding energy (LDM) and DE for the medium nucleus 
Element A Z B(A,Z) (MeV) DE (MeV) Deviation 

Antimony 121 51 1027.830099 1026.33322 0.15% 

 123 51 1042.182558 1042.105378 0.01% 

Tellurium 120 52 1019.942516 1017.29115 0.26% 
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 122 52 1036.25601 1034.340395 0.18% 
 123 52 1043.97884 1041.269823 0.26% 
 124 52 1051.421762 1050.695672 0.07% 
 125 52 1058.591521 1057.27113 0.12% 
 126 52 1065.49465 1066.384926 0.08% 
 128 52 1078.526126 1081.451939 0.27% 

 

Table 3. Calculated nuclear binding energy (LDM) and DE for the heavy nucleus 
Element A Z B(A,Z) (MeV) DE (MeV) Deviation 
Dubnium 262 105 1932.468975 2021.90738 4.63% 

Seaborgium 266 106 1956.198382 2052.664578 4.93% 

Bohrium 264 107 1936.851159 2035.498896 5.09% 
Hassium 269 108 1967.993291 2085.464556 5.97% 
Meitnerium 268 109 1954.724393 2076.566868 6.23% 
Ununnilium 272 110 1978.767098 2108.000335 6.53% 
Unununium 272 111 1972.004887 2107.150808 6.85% 
Ununbium 277 112 2003.406811 2148.155437 7.23% 
Ununquadium 289 114 2076.244394 2243.447887 8.05% 
Ununhexium 289 116 2065.915993 2241.882968 8.52% 
Ununoctium 293 118 2082.114048 2272.603837 9.15% 

 

The data in Tables 2 and 3 show that the deviation between calculations using LDM and 
DE is low (below 1% for medium nuclei such as Antimony/Sb and Tellurium/Te, and less 
than 10% for heavy nuclei Z=105-118). Although this 10% value is statistically higher than 
the deviations found in heavy nuclei, it is physically consistent with LDM limitations. This is 
because these nuclei satisfy the main macroscopic assumptions of the LDM model. The LDM 
assumes that nuclei behave like incompressible liquid droplets, where the binding energy 
behavior is dominated by the collective interaction of many nucleons. For medium nuclei 
(𝐴 ≈ 120), the number of nucleons is large enough that the collective effect is more 
prominent than the behavior of individual nucleons. In addition, the volume-to-surface ratio 
is higher than in light nuclei, so that the volume energy term becomes dominant. In heavy 
nuclei (𝑍 = 105 − 118), although the Coulomb force that pushes the nuclei apart is very 
large, the very high number of nucleons (𝐴 > 280) greatly strengthens the validity of the 
collective assumption. In heavy nuclei, the very large number of nucleons (A) reinforces the 
validity of the collective assumption. However, this macroscopic description has limitations 
because it does not take into account shell effects and nuclear deformation, which become 
increasingly prominent in heavy elements.  

 
3.2 Binding Energy per Nucleon (B(Z,A)/A) 
Figure 2 shows that for small A (light nuclei), the predicted value of (𝐵(𝑍, 𝐴)/𝐴) is very low 
(even negative at A=1), which is inconsistent with the reference. This indicates that LDM fails 
to capture the specific interactions of individual nucleons and effects related to quantum 
symmetry. Meanwhile, the value of (𝐵(𝑍, 𝐴)/𝐴) increases sharply as A increases to around 20. 
This increase is dominated by the volume term, which increases rapidly compared to the surface 
term and the Coulomb term. This curve saturates at around A = 20, indicating the fundamental 
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nature of saturated nuclear force, which means that each nucleon interacts only with a small 
number of its closest neighbors. This can also be seen in the 𝑅% in Figure 1, where the light 
nucleus is lower than the medium nucleus, because the variance of the experimental data is not 
only influenced by volume and surface area but also by the quantum configuration of the 
nucleons. This calculated data contrasts with the experimental results for the binding energy 
per nucleon. This graph generally shows that LDM successfully captures the macroscopic trend 
of nuclear binding energy (the saturated nature of nuclear forces) but fails to explain the details 
of light nuclear binding energy and local fluctuations caused by quantum skin structure. In light 
nuclei, nuclear properties are dominated more by individual quantum effects than by collective 
effects, which include the existence of shell structure that greatly influences the stability of light 
nuclei and pairing effects that govern the interaction between pairs of nucleons with opposite 
spins, contributing significantly to stability. However, Figure 2 shows that krypton (Kr-80) has 
the highest binding energy with a value of 8.98 MeV/nucleon, which differs from the reference 
by Krane (1998) [7], iron (Fe-56), with a value of 8.79 MeV/nucleon [2]. This is a consequence 
of the inherent limitations of LDM as a macroscopic model. The shift in the stability peak 
toward larger mass numbers in this study confirms that pure LDM can only capture global 
trends in binding energy and cannot represent the fine nuclear structure that places iron as the 
most stable nucleus empirically. These results are consistent with other studies that have found 
this shift in binding energy [9], [10]. 

 
Figure 2: Nuclear binding energy per nucleon using the LDM 

4. Conclusion 

Calculations of nuclear binding energy using LDM can produce small deviations with mass 
defect values in medium nuclei, but not in light and heavy nuclei. In heavy nuclei, the number of 
nucleons is large enough that collective effects are more prominent than the behavior of individual 
nucleons. The properties of the nucleus (such as binding energy) are better explained by the 
interaction of all nucleons together (collective effects) rather than by considering only the motion 
and energy of a single nucleon. In addition, LDM can also predict the binding energy per nucleon. 
However, the highest binding energy belongs to krypton (Kr-80) with a value of 8.98 
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MeV/nucleon, which is different from the reference, namely iron (Fe-56), with a value of 8.79 
MeV/nucleon. 
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